Система уравнений с помощью обратной матрицы онлайн. Обратная матрица

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения.

(иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ . Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^{-1}$.
  3. Используя равенство $X=A^{-1}\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ - матрица системы, $B$ - матрица свободных членов, $X$ - матрица неизвестных. Пусть матрица $A^{-1}$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^{-1}$ слева:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B.$$

Так как $A^{-1}\cdot A=E$ ($E$ - единичная матрица), то записанное выше равенство станет таким:

$$E\cdot X=A^{-1}\cdot B.$$

Так как $E\cdot X=X$, то:

$$X=A^{-1}\cdot B.$$

Пример №1

Решить СЛАУ $ \left \{ \begin{aligned} & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end{aligned} \right.$ с помощью обратной матрицы.

$$ A=\left(\begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right);\; B=\left(\begin{array} {c} 29\\ -11 \end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \end{array}\right). $$

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^{-1}$. В примере №2

$$ A^{-1}=-\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$. Затем выполним умножение матриц

$$ \left(\begin{array} {c} x_1\\ x_2 \end{array}\right)= -\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right)\cdot \left(\begin{array} {c} 29\\ -11 \end{array}\right)=\\ =-\frac{1}{103}\cdot \left(\begin{array} {c} 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end{array}\right)= -\frac{1}{103}\cdot \left(\begin{array} {c} 309\\ -206 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right). $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Ответ : $x_1=-3$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end{aligned}\right.$ методом обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

$$ A=\left(\begin{array} {ccc} 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end{array}\right);\; B=\left(\begin{array} {c} -1\\0\\6\end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right). $$

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^{-1}$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^{-1}$:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)= \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)\cdot \left(\begin{array} {c} -1\\0\\6\end{array}\right)=\\ =\frac{1}{26}\cdot \left(\begin{array} {c} 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end{array}\right)=\frac{1}{26}\cdot \left(\begin{array} {c} 0\\-104\\234\end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right) $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Метод обратной матрицы не представляет ничего сложного, если знать общие принципы работы с матричными уравнениями и, конечно, уметь производить элементарные алгебраические действия.

Решение системы уравнений методом обратной матрицы. Пример.

Удобнее всего постигать метод обратной матрицы на наглядном примере. Возьмем систему уравнений:

Первый шаг, который необходимо сделать для решения этой системы уравнений - найти определитель. Поэтому преобразим нашу систему уравнений в следующую матрицу:

И найдем нужный определитель:

Формула, использующаяся для решения матричных уравнений, выглядит следующим образом:

Таким образом, для вычисления Х нам необходимо определить значение матрицы А-1 и умножить его на b. В этом нам поможет другая формула:

Ат в данном случае будет транспонированной матрицей - то есть, той же самой, исходной, но записанной не строками, а столбцами.

Не следует забывать о том, что метод обратной матрицы , как и метод Крамера, подходит только для систем, в которых определитель больше или меньше нуля. Если же определитель равен нулю, нужно использовать метод Гаусса.

Следующий шаг - составление матрицы миноров, представляющей собой такую схему:

В итоге мы получили три матрицы - миноров, алгебраических дополнений и транспонированную матрицу алгебраических дополнений. Теперь можно переходить к собственно составлению обратной матрицы. Формулу мы уже знаем. Для нашего примера это будет выглядеть так.

Пусть дана система линейных уравнений снеизвестными:

Будем предполагать, что основная матрица невырожденная. Тогда, по теореме 3.1, существует обратная матрица
Помножив матричное уравнение
на матрицу
слева, воспользовавшись определением 3.2, а также утверждением 8) теоремы 1.1, получим формулу, на которой основан матричный метод решения систем линейных уравнений:

Замечание. Отметим, что матричный метод решения систем линейных уравнений в отличие от метода Гаусса имеет ограниченное применение: этим методом могут быть решены только такие системы линейных уравнений, у которых, во-первых, число неизвестных равно числу уравнений, а во-вторых, основная матрица невырожденная.

Пример. Решить систему линейных уравнений матричным методом.

Задана система трёх линейных уравнений с тремя неизвестными
где

Основная матрица системы уравнений невырожденная, поскольку её определитель отличен от нуля:

Обратную матрицу
составим одним из методов, описанных в пункте 3.

По формуле матричного метода решения систем линейных уравнений получим

5.3. Метод Крамера

Данный метод так же, как и матричный, применим только для систем линейных уравнений, у которых число неизвестных совпадает с числом уравнений. Метод Крамера основан на одноимённой теореме:

Теорема 5.2. Система линейных уравнений снеизвестными

основная матрица которой невырожденная, имеет единственное решение, которое может быть получено по формулам

где
определитель матрицы, полученной из основной матрицысистемы уравнений заменой её
го столбца столбцом свободных членов.

Пример. Найдём решение системы линейных уравнений, рассмотренной в предыдущем примере, методом Крамера. Основная матрица системы уравнений невырожденная, поскольку
Вычислим определители



По формулам, представленным в теореме 5.2, вычислим значения неизвестных:

6. Исследование систем линейных уравнений.

Базисное решение

Исследовать систему линейных уравнений – означает определить, какой является эта система – совместной или несовместной, и в случае её совместности выяснить, определённая эта система или неопределённая.

Условие совместности системы линейных уравнений даёт следующая теорема

Теорема 6.1 (Кронекера–Капелли).

Система линейных уравнений совместна тогда и только тогда, когда ранг основной матрицы системы равен рангу её расширенной матрицы:

Для совместной системы линейных уравнений вопрос о её определённости или неопределённости решается с применением следующих теорем.

Теорема 6.2. Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой

Теорема 6.3. Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой.

Таким образом, из сформулированных теорем вытекает способ исследования систем линейных алгебраических уравнений. Пусть n – количество неизвестных,

Тогда:


Определение 6.1. Базисным решением неопределённой системы линейных уравнений называют такое её решение, в котором все свободные неизвестные равны нулю.

Пример. Исследовать систему линейных уравнений. В случае неопределённости системы найти её базисное решение.

Вычислим ранги основной и расширенной матрицданной системы уравнений, для чего приведём расширенную (а вместе с тем и основную) матрицу системы к ступенчатому виду:

Вторую строку матрицы сложим с её первой строкой, умноженной на третью строку – с первой строкой, умноженной на
а четвёртую строку – с первой, умноженной наполучим матрицу

К третьей строке этой матрицы прибавим вторую строку, умноженную на
а к четвёртой строке – первую, умноженную на
В результате получим матрицу

удаляя из которой третью и четвёртую строки получим ступенчатую матрицу

Таким образом,

Следовательно, данная система линейных уравнений совместна, а поскольку величина ранга меньше числа неизвестных, система является неопределённой.Полученной в результате элементарных преобразований ступенчатой матрице соответствует система уравнений

Неизвестные иявляются главными, а неизвестныеи
свободными. Придавая свободным неизвестным нулевые значения, получим базисное решение данной системы линейных уравнений.

По формулам Крамера;

Методом Гаусса;

Решение : Теорема Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу ее расширенной матрицы, т. е. r (A )=r (A 1 ), где

Расширенная матрица системы имеет вид:

Умножим первую строку на (–3 ),а вторую на (2 ); прибавим после этого элементы первой строки к соответствующим элементам второй строки; вычтем из второй строки третью. В полученной матрице первую строку оставляем без изменений.

6 ) и поменяем местами вторую и третью строки:

Умножим вторую строку на (–11 ) и прибавим к соответствующим элементам третьей строки.

Разделим элементы третьей строки на (10 ).

Найдем определитель матрицы А .

Следовательно, r (A )=3 . Ранг расширенной матрицы r (A 1 ) так же равен 3 , т.е.

r (A )=r (A 1 )=3 Þ система совместна.

1) Исследуя систему на совместность, расширенную матрицу преобразовали по методу Гаусса.

Метод Гаусса состоит в следующем:

1. Приведение матрицы к треугольному виду, т. е. ниже главной диагонали должны находиться нули (прямой ход).

2. Из последнего уравнения находим х 3 и подставляем его во второе, находим х 2 , и зная х 3 , х 2 подставляем их в первое уравнение, находим х 1 (обратный ход).

Запишем, преобразованную по методу Гаусса, расширенную матрицу

в виде системы трех уравнений:

Þ х 3 =1

х 2 =х 3 Þ х 3 =1

2х 1 =4+х 2 +х 3 Þ 2х 1 =4+1+1 Þ

Þ 2х 1 =6 Þ х 1 =3

.

2) Решим систему по формулам Крамера: если определитель системы уравнений Δ отличен от нуля, то система имеет единственное решение, которое находится по формулам

Вычислим определитель системы Δ:

Т.к. определитель системы отличен от нуля, то согласно правилу Крамера, система имеет единственное решение. Вычислим определители Δ 1 , Δ 2 , Δ 3 . Они получаются из определителя системы Δ заменой соответствующего столбца на столбец свободных коэффициентов.

Находим по формулам неизвестные:

Ответ: х 1 =3 , х 2 =1, х 3 =1.

3) Решим систему средствами матричного исчисления, т. е. при помощи обратной матрицы.

А×Х=В Þ Х=А -1 × В , где А -1 – обратная матрица к А ,

Столбец свободных членов,

Матрица-столбец неизвестных.

Обратная матрица считается по формуле:

где D - определитель матрицы А , А ij – алгебраические дополнения элемента а ij матрицы А . D = 60 (из предыдущего пункта). Определитель отличен от нуля, следовательно, матрица А обратима, и обратную к ней матрицу можно найти по формуле (*). Найдем алгебраические дополнения для всех элементов матрицы А по формуле:



А ij = (-1 ) i+j M ij .

х 1 , х 2 , х 3 обратили каждое уравнение в тождество, то они найдены верно.

Пример 6 . Решить систему методом Гаусса и найти какие-нибудь два базисных решения системы.

Понравилась статья? Поделиться с друзьями: