Использование eeprom памяти. Внутренняя энергонезависимая память EEPROM

  • Tutorial

Резюме: Если вы периодически обновляете некоторое значение в EEPROM каждые несколько минут (или несколько секунд), вы можете столкнуться с проблемой износа ячеек EEPROM. Чтобы избежать этого, требуется снижать частоту записей в ячейку. Для некоторых типов EEPROM даже частота записи чаще чем один раз в час может быть проблемой.

Когда вы записываете данные, время летит быстро

EEPROM повсеместно используется для сохранения параметров настройки и журнала работы во встраиваемых системах. К примеру, вы можете хотеть функцию «черного ящика», для записи последних данных на момент аварии или потери питания. Я видел спецификации с требованием записывать подобные данные каждые несколько секунд.

Но проблема в том, что EEPROM имеет ограниченный ресурс числа записей. После 100,000 или миллиона записей (зависит от конкретного чипа), некоторые из ваших систем начнут испытывать проблемы с отказом EEPROM. (Посмотрите в даташит, чтобы узнать конкретную цифру. Если вы хотите выпустить большое число устройств, «наихудший случай», вероятно, более важен чем «типичный»). Миллион записей кажется большой цифрой, но на самом деле он закончится очень быстро. Давайте посмотрим на примере, предположив, что нам нужно сохранять измеренное напряжение в одну ячейку каждые 15 секунд.

1,000,000 записей при одной записи в 15 секунд дают записи в минуту:
1,000,000 / (4 * 60 минут/час * 24 часа/день) = 173.6 дней.
Другими словами, ваша EEPROM исчерпает резерв в миллион записей менее чем через 6 месяцев.

Ниже приведен график, показывающая время до износа (в годах), основанный на периоде обновления конкретной ячейки EEPROM. Ограничительная линия для продукта с продолжительностью жизни 10 лет составляет одно обновление каждые 5 минут 15 секунд для микросхемы с ресурсом 1 миллион записей. Для EEPROM с ресурсом 100К можно обновлять конкретную ячейку не чаще одного раза в 52 минуты. Это означает, что не стоит и надеяться обновлять ячейку каждые несколько секунд, если вы хотите, чтобы ваш продукт работал годы, а не месяцы. Вышесказанное масштабируется линейно, правда, в настоящем приборе имеются еще и вторичные факторы, такие как температура и режим доступа.

Уменьшить частоту

Самый безболезненный способ решить проблему-это просто записывать данные реже. В некоторых случаях требования к системе это позволяют. Или можно записывать только при каких-либо больших изменениях. Однако, с записью, привязанной к событиям, помните о возможном сценарии, при котором значение будет постоянно колебаться, и вызовет поток событий, которые приведут к износу EEPROM.
(Будет неплохо, если вы сможете определить, сколько раз производилась запись в EEPROM. Но это потребует счётчика, который будет храниться в EEPROM… при этом проблема превращается проблему износа счётчика.)

Прерывание по снижению уровня питания

В некоторых процессорах имеется прерывание по низкому уровню питания, которое можно использовать для записи одного последнего значения в EEPROM, в то время как система выключается по потере питания. В общем случае, вы храните интересующее значение в ОЗУ, и сохраняете его в EEPROM только при выключении питания. Или, возможно, вы записываете EEPROM время от времени, и записываете другую копию в EEPROM как часть процедуры выключения, чтобы убедиться, что самые последние данные запишутся.
Важно убедиться, что есть большой конденсатор по питанию, который будет поддерживать напряжение, достаточное для программирования EEPROM достаточно продолжительное время. Это может сработать, если вам нужно записать одно или два значения, но не большой блок данных. Осторожно, тут имеется большое пространство для ошибки!

Кольцевой буфер

Классическое решение проблемы износа-использовать кольцевой буфер FIFO, содержащий N последних записей значения. Так-же понадобится сохранять указатель на конец буфера в EEPROM. Это уменьшает износ EEPROM на величину, пропорциональную числу копий в этом буфере. Например, если буфер проходит через 10 различных адресов для сохранения одного значения, каждая конкретная ячейка модифицируется в 10 раз реже, и ресурс записи возрастает в 10 раз. Вам также понадобится отдельный счётчик или отметка времени для каждой из 10 копий, чтобы можно было определить, которая из них последняя на момент выключения. Другими словами, понадобится два буфера, один для значения, и один для счетчика. (Если сохранять счетчик по одному и тому-же адресу, это приведёт к его износу, т.к. он должен увеличиваться при каждом цикле записи.) Недостаток этого метода в том, что нужно в 10 раз больше места чтобы получить в 10 раз большую продолжительность жизни. Можно проявить смекалку, и упаковать счетчик вместе с данными. Если вы записываете большое количество данных, добавление нескольких байт для счетчика - не такая уж большая проблема. Но в любом случае, понадобится много EEPROM.
Atmel приготовил аппноут, содержащий все кровавые подробности:
AVR-101: High Endurance EEPROM Storage: www.atmel.com/images/doc2526.pdf

Особый случай для счётчика числа записей

Иногда нужно сохранить счётчик, а не сами значения. К примеру, вы можете хотеть знать число включений прибора, или время работы вашего устройства. Самое плохое в счётчиках, это то, что у них постоянно меняется младший значащий бит, изнашивая младшие ячейки EEPROM быстрее. Но и тут возможно применить некоторые трюки. В аппноуте от Microchip есть несколько умных идей, таких как использование кода Грея, чтобы только один бит из многобайтового счётчика менялся при изменении значения счетчика. Также они рекомендуют использовать корректирующие коды для компенсации износа. (Я не знаю, насколько эффективно будет применение таких кодов, т.к. это будет зависеть от того, насколько независимы будут ошибки в битах в байтах счётчика, используйте на свой страх и риск, прим. авт.). Смотри аппноут: ww1.microchip.com/downloads/en/AppNotes/01449A.pdf

Примечание: для тех, кто хотел бы узнать больше, Microchip подготовил документ, содержащий детальную информацию об устройстве ячеек EEPROM и их износе с диаграммами:
ftp.microchip.com/tools/memory/total50/tutorial.html

Дайте мне знать, если у вас имеются какие-либо интересные идеи по поводу борьбы с износом EEPROM.

Источик: Phil Koopman, «Better Embedded System SW»
betterembsw.blogspot.ru/2015/07/avoiding-eeprom-wearout.html

Примечание переводчика: в последние годы появились микросхемы EEPROM со страничной организацией стирания (подобной микросхемам FLASH), где логически можно адресовать ячейки (читать, записывать и стирать) побайтно, но при этом микросхема невидимо для пользователя стирает всю страницу целиком и перезаписывает новыми данными. Т.е. стерев ячейки по адресу 0, мы фактически стёрли и перезаписали ячейки с адресами 0...255 (при размере страницы 256 байт), поэтому трюк с буфером в этом случае не поможет. При исчерпании ресурс записей у такой микросхемы выходит из строя не одна ячейка, а вся страница целиком. В даташитах для таких микросхем ресурс записи указан для страницы , а не для конкретной ячейки. Смотри, например, даташит на 25LC1024 от Microchip.

Теги: Добавить метки

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое.

По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет , а чип памяти хранит сведения, необходимые микропроцессору.

Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

В единичном виде обработка битов видится сложной. Поэтому биты объединяются в группы. Шестнадцать бит составляют группу «слов», восемь бит составляют байт — «часть слова», четыре бита — «кусочек слова».

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Поэтому в комбинациях двух знаков шестнадцатеричной системы также укладываются 256 значений (от 00h до FFh). Конечный символ «h» указывает на принадлежность к шестнадцатеричным числам.

Организация микросхем (чипов) памяти

Для 8-битных чипов памяти (наиболее распространенный тип) биты объединяются в байты (8 бит) и сохраняются под определённым «адресом».

По назначенному адресу открывается доступ к байтам. Вывод восьми битов адреса доступа осуществляется через восемь портов данных.


Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро

На заре возникновения памяти, сохраняющей данные при отключении пита­ния (EPROM, Erasable Programmable ROM - «стираемая/программируемая ROM», или по-русски ППЗУ - «программируемое ПЗУ»), основным типом ее была память, стираемая ультрафиолетом: UV-EPROM (Ultra-Violet EPROM, УФ-ППЗУ). Причем часто приставку UV опускали, так как всем бы­ло понятно, что EPROM - это стираемая ультрафиолетом, а ROM (или ПЗУ) просто, без добавлений- это однократно программируемые кристаллы OTP-ROM. Микроконтроллеры с УФ-памятью программ были распростране­ны еще в середине 1990-х. В рабочих образцах устройств с УФ-памятью кварцевое окошечко, через которое осуществлялось стирание, заклеивали кусочком черной липкой ленты, так как информация в UV-EPROM медленно разрушается и на солнечном свету.

Рис. 18.7. Устройство элементарной ячейки EPROM

На рис. 18.7 показано устройство элементарной ячейки EPROM, которая ле­жит в основе всех современных типов flash-памяти. Если исключить из нее то, что обозначено надписью «плавающий затвор», мы получим самый обыч­ный полевой транзистор - точно такой же входит в ячейку DRAM. Если по­дать на управляющий затвор такого транзистора положительное напряжение, то он откроется, и через него потечет ток (это считается состоянием логиче­ской единицы). На рис. 18.7 вверху-и изображен такой случай, когда пла­вающий затвор не оказывает никакого влияния на работу ячейки - напри­мер, такое состояние характерно для чистой flash-памяти, в которую еще ни разу ничего не записывали.

Если же мы каким-то образом (каким- поговорим отдельно) ухитримся разместить на плавающем затворе некоторое количество зарядов - свобод­ных электронов, которые показаны на рис. 18.7 внизу в виде темных кружоч­ков со значком минуса, то они будуу экранировать действие управляющего электрода, и такой транзистор вообще перестанет проводить ток. Это состоя­ние логического нуля. Поскольку плавающий затвор потому так и называет­ся, что он «плавает» в толще изолятора (двуокиси кремния), то сообщенные ему однажды заряды в покое никуда деваться не могут. И записанная таким образом информация может храниться десятилетиями (до последнего време­ни производители обычно давали гарантию на 10 лет, но на практике в обыч­ных условиях время хранения значительно больше).

Заметки на полях

Строго говоря, в NAND-чипах (о которых далее) логика обязана быть обрат­ной. Если в обычной EPROM запрограммированную ячейку вы не можете от­крыть подачей считывающего напряжения, то там наоборот - ее нельзя запе­реть снятием напряжения. Поэтому, в частности, чистая NAND-память выдает все нули, а не единицы, как EPROM. Но это нюансы, которые не меняют суть дела.

Octajiocb всего ничего - придумать, как размещать заряды на изолирован­ном от всех внешних влияний плавающем затворе. И не только разме­щать - ведь иногда память и стирать приходится, потому должен сущест­вовать способ их извлекать оттуда. В UV-EPROM слой окисла между плавающим затвором и подложкой был достаточно толстым (если величину 50 нанометров можно охарактеризовать словом «толстый», конечно), и ра­ботало все это довольно грубо. При записи на управляющий затвор подава­ли достаточно высокое положительное напряжение - иногда до 36-40 В, а на сток транзистора - небольшое положительное. При этом электроны, которые двигались от истока к стоку, настолько ускорялись полем управ­ляющего электрода, что просто перепрыгивали барьер в виде изолятора между подложкой и плавающим затвором. Такой процесс называется еще «инжекцией горячих электронов».

Ток заряда при этом достигал миллиампера - можете себе представить, ка­ково было потребление всей схемы, если в ней одновременно программиро­вать хотя бы несколько тысяч ячеек. И хотя такой ток требовался на доста­точно короткое время (впрочем, с точки зрения быстродействия схемы не такое уж и короткое - миллисекунды), но это было крупнейшим недостат­ком всех старых образцов EPROM-памяти. Еще хуже другое - и изолятор, и сам плавающий затвор такого издевательства долго не выдерживали и посте­пенно деградировали, отчего количество циклов стирания-записи было огра­ничено нескольким сотнями, максимум- тысячами. Во многих образцах flash-памяти более позднего времени даже была предусмотрена специальная схема для хранения карты «битых» ячеек - в точности так, как это делается для жестких дисков. В современных моделях с миллионами ячеек такая карта тоже имеется - однако число циклов стирания/записи теперь возросло до сотен тысяч. Как этого удалось добиться?

Рис. 18.8. Процесс стирания в элементарной ячейке EPROM

Сначала посмотрим, как осуществлялось в этой схеме стирание. В UV-EPROM при облучении ультрафиолетом фотоны высокой энергии сообщали электронам на плавающем затэоре достаточный импульс для того, чтобы они «прыгали» обратно на подложку самостоятельно, без каких-либо электриче­ских воздействий. Первые образцы электрически стираемой памяти (EEPROM, Electrically Erasable Programmable ROM - «электрически стирае­мое перепрограммируемое ПЗУ», ЭСППЗУ) были созданы в компании Intel в. конце 1970-х при непосредственном участии будущего основателя Atmel Джорджа Перлегоса. Он использовал «квантовый эффект туннелирования Фаулера-Нордхейма». За этим непонятным названием кроется довольно про­стое по сути (но очень сложное с физической точки зрения) явление: при достаточно тонкой пленке изолятора (ее толщину пришлось уменьшить с 50 до 10 нм) электроны, если их слегка подтолкнуть подачей не слишком высо­кого напряжения в нужном направлении, могут просачиваться через барьер, не перепрыгивая его. Сам процесс показан на рис. 18.8 вверху (обратите внимание на знак напряжения на управляющем электроде).

Старые образцы EEPROM именно так и работали: запись производилась «го­рячей инжекцией», а стирание - «квантовым туннелированием». Оттого они были довольно сложны в эксплуатации - разработчики со стажем помнят, что первые микросхемы EEPROM требовали два, а то и три питающих на­пряжения, причем подавать их при записи и стирании требовалось в опреде­ленной последовательности.

Превращение EEPROM во flash происходило по трем разным направлениям. В первую очередь - в направлении совершенствования конструкции самой ячейки. Для начала избавились от самой противной стадии - «горячей ин-жекции». Вместо нее при записи стали также использовать «квантовое тун-нелирование», как и при стирании. рис. 18.8 внизу показан этот про­цесс- если при открытом транзисторе подать на управляющий затвор достаточно высокое (но значительно меньшее, чем при «горячей инжекции») напряжение, то часть электронов, двигающихся через открытый транзистор от истока к стоку, «просочится» через изолятор и окажется на плавающем затворе. Потребление тока при записи снизилось на несколько порядков. Изолятор, правда, пришлось сделать еще тоньше, что обусловило довольно большие трудности с внедрением этой технологии в производство.

Второе направление - ячейку сделали несколько сложнее, пристроив к ней второй транзистор (обычный, не двухзатворный), который разделил вывод стока и считывающую шину всей микросхемы. Благодаря всему этому уда­лось добиться значительного повышения долговечности - до сотен тысяч циклов записи/стирания (миллионы циклов, характерные для флэш-карточек, получаются, если добавить схемы коррекции ошибок). Кроме того, схемы формирования высокого напряжения и соответствующие генераторы им­пульсов записи/стирания перенесли внутрь микросхемы, отчего пользоваться этими типами памяти стало несравненно удобнее - они стали питаться от одного напряжения (5, 3,3 или даже 1,8 В).

И, наконец, третье, едва ли не самое главное усовершенствование заключа­лось в изменении организации доступа к ячейкам на кристалле, вследствие чего этот тип памяти и заслужил наименование - flash (то есть «молния»), ныне известное каждому владельцу цифровой камеры или карманного МРЗ-плеера. Так в середине 1980-х назвали разновидность EEPROM, в ко­торой стирание и запись производились сразу целыми блоками - страни­цами. Процедура чтения из произвольной ячейки, впрочем, по понятным причинам замедлилась- для его ускорения приходится на кристаллах flash-памяти располагать промежуточную (буферную) SRAM. Для флэш-накопителей это не имеет особого значения, так как там все равно данные читаются и пишутся сразу большими массивами, но для использования в микроконтроллерах это может оказаться неудобным. Тем более, в МК не­удобно использовать самый быстродействующий вариант flash-техноло­гии - т. н. память типа NAND (от наименования логической функции «И-НЕ»), где читать и записывать память в принципе возможно только блока­ми по 512 байт (это обычная величина сектора на жестком диске, также чи­таемого и записываемого целиком за один раз - отсюда можно понять ос­новное назначение NAND).

В МК обычно используют традиционную (типа NOR) flash-память про­грамм, в которой страницы относительно невелики по размерам - порядка 64-256 байт. Впрочем, если пользователь сам не берется за создание про­грамматора для такой микросхемы, он может о страничном характере па­мяти и не догадываться. А для пользовательских данных применяют EEPROM либо с возможностью чтения произвольного байта, либо секцио­нированную, но на очень маленькие блоки - например, по 4 байта. При этом для пользователя все равно доступ остается побайтным. Характерной чертой такой памяти является довольно медленная (порядка миллисекунд) процедура записи, в то время как чтение протекает ничуть не медленнее любых других операций в МК.

Развитие технологий flash-памяти имело огромное значения для удешевления и доступности микроконтроллеров. В дальнейшем мы будем иметь дело с энергонезависимой памятью не только в виде встроенных в микроконтроллер памяти программ и данных, но и с отдельными микросхемами, позволяющи­ми записывать довольно большие объемы информации.

Arduino – это целое семейство различных устройств для создания электронных проектов. Микроконтроллеры очень удобны для использования, доступны к освоению даже новичку. Каждый микроконтроллер состоит из платы, программ для обеспечения работы, памяти. В этой статье будет рассмотрена энергонезависимая память, используемая в Arduino.

Описание памяти EEPROM

Ардуино предоставляет своим пользователям три типа встроенной памяти устройств: стационарное ОЗУ (оперативно-запоминающее устройство или SRAM - static random access memory) – необходимо для записи и хранения данных в процессе использования; флеш-карты – для сохранения уже записанных схем; – для хранения и последующего использования данных.

На ОЗУ все данные стираются, как только происходит перезагрузка устройства либо отключается питание. Вторые две сохраняют всю информацию до перезаписи и позволяют извлекать ее при необходимости. Флеш-накопители достаточно распространены в настоящее время. Подробнее стоит рассмотреть память EEPROM.

Аббревиатура расшифровывается, как Electrically Erasable Programmable Read-Only Memory и в переводе на русский дословно означает – электрически стираемая программируемая память только для чтения. Производитель гарантирует сохранность информации на несколько десятилетий вперед после последнего отключения питания (обычно приводят срок в 20 лет, зависит от скорости снижения заряда устройства).

При этом нужно знать, что возможность перезаписи на устройство ограничена и составляет не более 100 000 раз. Поэтому рекомендуют аккуратно и внимательно относиться к вносимым данным и не допускать перезаписи лишний раз.

Объем памяти, в сравнении с современными носителями, очень небольшой и разный для различных микроконтроллеров. Например, для:

  • ATmega328 – 1кБ
  • ATmega168 и ATmega8 – 512 байт,
  • и ATmega1280 – 4 кБ.

Так устроено потому, что каждый микроконтроллер предназначен для определенного объема задач, имеет разное количество выводов для подключения, соответственно, необходим разный объем памяти. При этом такого количества достаточно для обычно создаваемых проектов.

Для записи на EEPROM требуется значительное количество времени – около 3 мс . Если в момент записи отключается питание, данные не сохраняются вовсе либо могут быть записаны ошибочно. Требуется всегда дополнительно проверять внесенную информацию, чтобы избежать сбоев во время работы. Считывание данных происходит гораздо быстрее, ресурс памяти от этого не снижается.

Библиотека

Работа с памятью EEPROM осуществляется с помощью библиотеки, которая была специально создана для Ардуино. Главными являются способность к записи и чтению данных. активируется командой #include EEPROM.h .

  • для записи – EEPROM.write(address, data);
  • для чтения – EEPROM.read(address).

В данных скетчах: address – аргумент с данными ячейки, куда вносятся данные второго аргумента data; при считывании используется один аргумент address, который показывает, откуда следует читать информацию.

Функция Назначение
read(address) считывает 1 байт из EEPROM ; address – адрес, откуда считываются данные (ячейка, начиная с 0);
write(address, value) записывает в память значение value (1 байт, число от 0 до 255) по адресу address;
update(address, value) заменяет значение value по адресу address, если её старое содержимое отличается от нового;
get(address, data) считывает данные data указанного типа из памяти по адресу address;
put(address, data) записывает данные data указанного типа в память по адресу address;
EEPROM позволяет использовать идентификатор "EEPROM" как массив, чтобы записывать данные в память и считывать их из памяти.

Запись целых чисел

Запись целых чисел в энергонезависимую память EEPROM осуществить достаточно просто. Внесение чисел происходит с запуском функции EEPROM.write() . В скобках указываются необходимые данные. При этом числа от 0 до 255 и числа свыше 255 записываются по-разному. Первые вносятся просто – их объем занимает 1 байт, то есть одну ячейку. Для записи вторых необходимо использовать операторов highByte() высший байт и lowByte() низший байт.

Число делится на байты и записывается отдельно по ячейкам. Например, число 789 запишется в две ячейки: в первую пойдет множитель 3, а во вторую – недостающее значение. В итоге получается необходимое значение:

3 * 256 + 21 = 789

Для « воссоединения» большого целого числа применяется функция word(): int val = word(hi, low) . Нужно читывать, что максимальное целое число для записи – 65536 (то есть 2 в степени 16). В ячейках, в которых еще не было иных записей, на мониторе будут стоять цифры 255 в каждой.

Запись чисел с плавающей запятой и строк

Числа с плавающей запятой и строк – это форма записи действительных чисел, где они представляются из мантиссы и показателя степени. Запись таких чисел в энергонезависимую память EEPROM производится с активацией функции EEPROM.put() , считывание, соответственно, – EEPROM.get() .

При программировании числовые значения с плавающей запятой обозначаются, как float, стоит отметить, что это не команда, а именно число. Тип Char (символьный тип) – используется для обозначения строк. Процесс записи чисел на мониторе запускается при помощи setup(), считывание – с помощью loop().

В процессе на экране монитора могут появиться значения ovf, что значит «переполнено», и nan, что значит «отсутствует числовое значение». Это говорит о том, что записанная в ячейку информация не может быть воспроизведена, как число с плавающей точкой. Такой ситуации не возникнет, если достоверно знать, в какой ячейке какой тип информации записан.

Примеры проектов и скетчей

Пример №1

Скетч запишет до 16 символов с последовательного порта и в цикле выведет 16 символов из EEPROM. Благодаря данные записываются в EEPROM и контролируется содержимое энергонезависимой памяти.

// проверка работы EEPROM #include int i, d; void setup() { Serial.begin(9600); // инициализируем порт, скорость 9600 } void loop() { // чтение EEPROM и вывод 16 данных в последовательный порт Serial.println(); Serial.print("EEPROM= "); i= 0; while(i < 16) { Serial.print((char)EEPROM.read(i)); i++; } // проверка есть ли данные для записи if (Serial.available() != 0) { delay(50); // ожидание окончания приема данных // запись в EEPROM i= 0; while(i < 20) { d= Serial.read(); if (d == -1) d= " "; // если символы закончились, заполнение пробелами EEPROM.write(i, (byte)d); // запись EEPROM i++; } } delay(500); }

Пример №2

Для большего понимания мы можем создать небольшой скетч, который поможет в понимании работы с энергонезависимой памятью. Считаем все ячейки этой памяти. Если ячейка не пустая - вывод в последовательный порт. После чего заполняем ячейки пробелами. Потом вводим текст через монитор последовательного порта. Его записываем в EEPROM, и при последующем включении считываем.

#include int address = 0; // адрес eeprom int read_value = 0; // считываемые с eeprom данные char serial_in_data; // данные последовательного порта int led = 6; // линия 6 для светодиода int i; void setup() { pinMode(led, OUTPUT); // линия 6 настраивается на выход Serial.begin(9600); // скорость передачи по последовательному порту 9600 Serial.println(); Serial.println("PREVIOUS TEXT IN EEPROM:-"); for(address = 0; address < 1024; address ++) // считываем всю память EEPROM { read_value = EEPROM.read(address); Serial.write(read_value); } Serial.println(); Serial.println("WRITE THE NEW TEXT: "); for(address = 0; address < 1024; address ++) // заполняем всю память EEPROM пробелами EEPROM.write(address, " "); for(address = 0; address < 1024;) // записываем пришедшие с последовательного порта данные в память EEPROM { if(Serial.available()) { serial_in_data = Serial.read(); Serial.write(serial_in_data); EEPROM.write(address, serial_in_data); address ++; digitalWrite(led, HIGH); delay(100); digitalWrite(led, LOW); } } } void loop() { //---- мигаем светодиодом каждую секунду -----// digitalWrite(led, HIGH); delay(1000); digitalWrite(led, LOW); delay(1000); }

Пример №3

Запись в память два целых числа, чтение их из EEPROM и вывод в последовательный порт. Числа от 0 до 255 занимают 1 байт памяти, с помощью функции EEPROM.write() записываются в нужную ячейку. Для чисел больше 255 их нужно делить на байты с помощью highByte() и lowByte() и записывать каждый байт в свою ячейку. Максимальное число при этом – 65536 (или 2 16).

#include // подключаем библиотеку EEPROM void setup() { int smallNum = 123; // целое число от 0 до 255 EEPROM.write(0, smallNum); // запись числа в ячейку 0 int bigNum = 789; // число > 255 разбиваем на 2 байта (макс. 65536) byte hi = highByte(bigNum); // старший байт byte low = lowByte(bigNum); // младший байт EEPROM.write(1, hi); // записываем в ячейку 1 старший байт EEPROM.write(2, low); // записываем в ячейку 2 младший байт Serial.begin(9600); // инициализация послед. порта } void loop() { for (int addr=0; addr<1024; addr++) { // для всех ячеек памяти (для Arduino UNO 1024) byte val = EEPROM.read(addr); // считываем 1 байт по адресу ячейки Serial.print(addr); // выводим адрес в послед. порт Serial.print("\t"); // табуляция Serial.println(val); // выводим значение в послед. порт } delay(60000); // задержка 1 мин }

Пример №4

Запись чисел с плавающей запятой и строк - метод EEPROM.put() . Чтение – EEPROM.get() .

#include // подключаем библиотеку void setup() { int addr = 0; // адрес float f = 3.1415926f; // число с плавающей точкой (типа float) EEPROM.put(addr, f); // записали число f по адресу addr addr += sizeof(float); // вычисляем следующую свободную ячейку памяти char name = "Hello, SolTau.ru!"; // создаём массив символов EEPROM.put(addr, name); // записываем массив в EEPROM Serial.begin(9600); // инициализация послед. порта } void loop() { for (int addr=0; addr<1024; addr++) { // для всех ячеек памяти (1024Б=1кБ) Serial.print(addr); // выводим адрес в послед. порт Serial.print("\t"); // табуляция float f; // переменная для хранения значений типа float EEPROM.get(addr, f); // получаем значение типа float по адресу addr Serial.print(f, 5); // выводим с точностью 5 знаков после запятой Serial.print("\t"); // табуляция char c; // переменная для хранения массива из 20 символов EEPROM.get(addr, c); // считываем массив символов по адресу addr Serial.println(c); // выводим массив в порт } delay(60000); // ждём 1 минуту }

Пример №5

Использование EEPROM как массива.

#include void setup() { EEPROM = 11; // записываем 1-ю ячейку EEPROM = 121; // записываем 2-ю ячейку EEPROM = 141; // записываем 3-ю ячейку EEPROM = 236; // записываем 4-ю ячейку Serial.begin(9600); } void loop() { for (int addr=0; addr<1024; addr++) { Serial.print(addr); Serial.print("\t"); int n = EEPROM; // считываем ячейку по адресу addr Serial.println(n); // выводим в порт } delay(60000); }

Работа с EEPROM

Как упоминалось ранее, ресурс памяти EEPROM ограничен. Для продления срока службы энергонезависимой памяти, вместо функции write() запись, лучше применять функцию update обновление. При этом перезапись ведется только для тех ячеек, где значение отличается от вновь записываемого.

Еще одной полезной функцией рассматриваемой памяти микроконтроллера является возможность использования ячеек хранения байтов, как деталей целостного массива EEPROM. При любом формате использования необходимо постоянно осуществлять контроль целостности записанных данных.

Такая память на Ардуино стандартно хранит самое важное для работы контроллера и устройства. К примеру, если на такой базе создается регулятор температуры и исходные данные окажутся ошибочными, устройство будет работать «неадекватно» существующим условиям – сильно занижать или завышать температуру.

Существует несколько ситуаций, когда память EEPROM содержит неправильные данные:

  1. При первоначальной активации – еще не было ни одной записи.
  2. В момент неконтролируемого отключения питания – часть или все данные не запишутся или запишутся некорректно.
  3. После завершения возможных циклов перезаписи данных.

Чтобы избежать возникновения неприятных последствий, устройство можно запрограммировать на несколько вариантов действий: применить данные аварийного кода, отключить систему полностью, подать сигнал о неисправности, использовать заранее созданную копию или другие.

Для контроля целостности информации используют контрольный код системы. Он создается по образцу записи первоначальных данных и, при проверке, он вновь просчитывает данные. Если результат отличается – это ошибка. Самым распространенным вариантом такой проверки является контрольная сумма – выполняется обычная математическая операция по сложению всех значений ячеек.

Опытные программисты добавляют к этому коду дополнительное «исключающее ИЛИ», например, E5h. В случае если все значения равны нулю, а система по ошибке обнулила исходные данные – такая хитрость выявит ошибку.

Таковы основные принципы работы с энергонезависимой памятью EEPROM для микроконтроллеров Arduino. Для определенных проектов стоит использовать только этот вид памяти. Он имеет как свои плюсы, так и свои недостатки. Для освоения методов записи и чтения лучше начать с простых задач.

EEPROM — это энергонезавимая память с электрическим стиранием информации. Количество циклов записи-стирания в этих микросхемах достигает 1000000 раз. Заминающие ячейки в них, также как и в постоянных запоминающих устройствах с электрическим стиранием EPROM, реализуются на основе транзисторов с плавающим затвором. Внутреннее устройство этой запоминающей ячейки приведено на рисунке 1:


Рисунок 1. Запоминающая ячейка ПЗУ с электрическим стиранием (EEPROM)

Ячейка EEPROM памяти представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В транзисторе с плавающим затвором при полностью стертом ПЗУ, заряда в "плавающем" затворе нет, и поэтому данный транзистор ток не проводит. При программировании, на второй затвор, находящийся над "плавающим" затвором, подаётся высокое напряжение и в него за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на его плавающем затворе может храниться десятки лет.

Подобная ячейка памяти применялась в ПЗУ с ультрафиолетовым стиранием (EPROM). В ячейке памяти с электрическим стиранием возможна не только запись, но и стирание информации. Стирание информации производится подачей на программирующий затвор напряжения, противоположного напряжению записи. В отличие от ПЗУ с ультрафиолетовым стиранием, время стирания информации в EEPROM памяти составляет около 10 мс.

Структурная схема энергонезависимой памяти с электрическим стиранием не отличается от структурной схемы масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Ее упрощенная структурная схема приведена на рисунке 2.



Рисунок 2. Упрощенная структурная схема EEPROM

В качестве примера микросхем EEPROM памяти можно назвать отечественные микросхемы 573РР3, 558РР3 и зарубежные микросхемы серий AT28с010, AT28с040 фирмы Atmel, HN58V1001 фирмы Hitachi Semiconductor, X28C010 фирмы Intersil Corporation. В EEPROM памяти чаще всего хранятся пользовательские данные в сотовых аппаратах, которые не должны стираться при выключении питания (например адресные книги), конфигурационная информация роутеров или сотовых аппаратов, реже эти микросхемы применяются в качестве конфигурационной памяти FPGA или хранения данных DSP. EEPROM изображаются на принципиальных схемах как показано на рисунке 3.


Рисунок 3. Условно-графическое обозначение электрически стираемого постоянного запоминающего устройства

Чтение информации из параллельной EEPROM памяти производится аналогично чтению из масочного ПЗУ. Сначала на шине адреса выставляется адрес считываемой ячейки памяти в двоичном коде A0...A9, затем подается сигнал чтения RD. Сигнал выбора кристалла CS обычно используется в качестве дополнительного адресного провода для обращения к микросхеме. Временные диаграммы сигналов на входах и выходах этого вида ПЗУ приведены на рисунке 4.



Рисунок 4. Временные диаграммы сигналов чтения информации из EEPROM памяти

На рисунке 5 приведен чертеж типового корпуса микросхемы параллельной EEPROM памяти.


Рисунок 5. Чертеж корпуса микросхемы параллельной EEPROM

Обычно данные, которые хранятся в EEPROM требуются достаточно редко. Время считывания при этом не критично. Поэтому в ряде случаев адрес и данные передаются в микросхему и обратно через последовательный порт. Это позволяет уменьшить габариты микросхем за счет уменьшения количества внешних выводов. При этом используются два вида последовательных портов — SPI порт и I2C порт (микросхемы 25сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

Внутренняя схема микросхем серии 24сXX (например AT24C01) приведена на рисунке 6.



Рисунок 6. Внутренняя схема микросхемы AT24C01

Подобные микросхемы широко используются для сохранения настроек телевизоров, в качестве памяти plug and play в компьютерах и ноутбуках, конфигурационной памяти ПЛИС и сигнальных процессоров (DSP). Применение последовательной EEPROM памяти позволило значительно уменьшить стоимость данных устройств и увеличить удобство работы с ними. Пример расположения данной микросхемы на печатной плате карты памяти компьютера приведен на рисунке 7.



Рисунок 7. EEPROM на печатной плате карты памяти компьютера

На рисунке 8 приведена схема электронной карты с применением внешней EEPROM микросхемы.


Рисунок 8. Схема электронной карты с применением внешней EEPROM

На данной схеме микроконтроллер PIC16F84 осуществляет обмен данными с EEPROM памятью 24LC16B. В таких устройствах, как SIM-карта, уже не применяется внешняя микросхема памяти. В SIM-картах сотовых аппаратов используется внутренняя EEPROM память однокристального микроконтроллера. Это позволяет максимально снизить цену данного устройства.

Схема управления для электрически стираемых программируемых ПЗУ получилась сложная, поэтому наметилось два направления развития этих микросхем:

  1. ЕСППЗУ (EEPROM) - электрически стираемое программируемое постоянное запоминающее устройство
  2. FLASH-ПЗУ

FLASH - ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.


Рисунок 9. Условно-графическое обозначение FLASH памяти

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 11.



Рисунок 10. Временные диаграммы сигналов чтения информации из ПЗУ

На рисунке 10 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD - это сигнал чтения, A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D - выходная информация, считанная из выбранной ячейки ПЗУ.

Литература:

Вместе со статьей "Постоянные запоминающие устройства (ПЗУ)" читают:

Понравилась статья? Поделиться с друзьями: